Thomas Schneider, Marcin Dymczyk, Marius Fehr, Kevin Egger, Simon Lynen, Igor Gilitschenski and Roland Siegwart
IEEE Robotics and Automation Letters, 2018
Robust and accurate visual-inertial estimation is crucial to many of today’s challenges in robotics. Being able to localize against a prior map and obtain accurate and drift-free pose estimates can push the applicability of such systems even further. Most of the currently available solutions, however, either focus on a single session use-case, lack localization capabilities or an end-to-end pipeline. We believe that by combining state-of-the-art algorithms, scalable multi-session mapping tools, and a flexible user interface, we can create an efficient research platform. We believe that only a complete system, combining state-of-the-art algorithms, scalable multi-session mapping tools, and a flexible user interface, can become an efficient research platform. We therefore present maplab, an open, research-oriented visual-inertial mapping framework for processing and manipulating multi-session maps, written in C++. On the one hand, maplab can be seen as a ready-to-use visual-inertial mapping and localization system. On the other hand, maplab provides the research community with a collection of multi-session mapping tools that include map merging, visual-inertial batch optimization, and loop closure. Furthermore, it includes an online frontend that can create visual-inertial maps and also track a global drift-free pose within a localization map. In this paper, we present the system architecture, five use-cases, and evaluations of the system on public datasets. The source code of maplab is freely available for the benefit of the robotics research community.
@article{schneider2018maplab,
title={maplab: An Open Framework for Research in Visual-inertial Mapping and Localization},
author={T. Schneider and M. T. Dymczyk and M. Fehr and K. Egger and S. Lynen and I. Gilitschenski and R. Siegwart},
journal={{IEEE Robotics and Automation Letters}},
year={2018}
}