Arthur D. Costea and Sergiu Nedevschi Proceedings of 2017 IEEE Intelligent Vehicles Symposium (IV), Redondo Beach, CA, USA, June 11-14, 2017, pp. 74-81 In this paper we introduce a novel multimodal boosting based solution for semantic segmentation of traffic scenarios. Local structure and context are captured from both monocular color and depth modalities in the form of image channels. We define multiple channel types at three different levels: low, intermediate and high order channels. The low order channels are computed using a multimodal multiresolution filtering scheme and capture structure and color information from lower receptive fields. For the intermediate order...
Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose Neira, Ian Reid and John J. Leonard IEEE Transactions on Robotics 32 (6) pp 1309-1332, 2016 Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation...
Mathias Buerki, Igor Gilitschenski, Elena Stumm, Roland Siegwart, and Juan Nieto International Conference on Intelligent Robots and Systems (IROS) 2016 We present an online landmark selection method for efficient and accurate visual localization under changing appearance conditions. The wide range of conditions encountered during long-term visual localization by e.g. fleets of autonomous vehicles offers the potential exploit redundancy and reduce data usage by selecting only those visual cues which are relevant at the given time. Therefore co-observability statistics guide landmark ranking and selection, significantly reducing the amount of information used for localization while maintaining or even improving accuracy. pdf video...