Appearance-Based Landmark Selection for Efficient Long-Term Visual Localization

Mathias Buerki, Igor Gilitschenski, Elena Stumm, Roland Siegwart, and Juan Nieto

International Conference on Intelligent Robots and Systems (IROS) 2016

landmark_selectionWe present an online landmark selection method for efficient and accurate visual localization under changing appearance conditions. The wide range of conditions encountered during long-term visual localization by e.g. fleets of autonomous vehicles offers the potential exploit redundancy and reduce data usage by selecting only those visual cues which are relevant at the given time. Therefore co-observability statistics guide landmark ranking and selection, significantly reducing the amount of information used for localization while maintaining or even improving accuracy.

pdf   video

@inproceedings{BuerkiIROS2016,
Title = {Appearance-Based Landmark Selection for Efficient Long-Term Visual Localization},
Author = {M. Buerki and I. Gilitschenski and E. Stumm and R. Siegwart and J. Nieto},
Fullauthor = {Mathias Buerki and Igor Gilitschenski and Elena Stumm and Roland Siegwart and Juan Nieto},
Booktitle = {{IEEE/RSJ} International Conference on Intelligent Robots and Systems ({IROS})},
Address = {Daejeon, Korea},
Month = {October},
Year = {2016},
}

Leave a Reply